Transcription Factors in Escherichia coli Prefer the Holo Conformation
نویسندگان
چکیده
The transcriptional regulatory network of Escherichia coli K-12 is among the best studied gene networks of any living cell. Transcription factors bind to DNA either with their effector bound (holo conformation), or as a free protein (apo conformation) regulating transcription initiation. By using RegulonDB, the functional conformations (holo or apo) of transcription factors, and their mode of regulation (activator, repressor, or dual) were exhaustively analyzed. We report a striking discovery in the architecture of the regulatory network, finding a strong under-representation of the apo conformation (without allosteric metabolite) of transcription factors when binding to their DNA sites to activate transcription. This observation is supported at the level of individual regulatory interactions on promoters, even if we exclude the promoters regulated by global transcription factors, where three-quarters of the known promoters are regulated by a transcription factor in holo conformation. This genome-scale analysis enables us to ask what are the implications of these observations for the physiology and for our understanding of the ecology of E. coli. We discuss these ideas within the framework of the demand theory of gene regulation.
منابع مشابه
Detection of Viable But Non-Culturable State of Escherichia coli O157:H7 Using Reverse Transcription PCR
Background and Aims: Many bacteria including Escherichia coli may enter into a viable but non-culturable (VBNC) state under unfavorable stresses, which are unable to be detected by culture-based methods. In this study, the use of Reverse Transcription PCR (RT-PCR) for detection of VBNC state of E. coli O157:H7 was investigated. Materials and Methods: Escherichia. coli O157:H7 was inoculated i...
متن کاملDetection and purification of the free A subunit of heat-labile enterotoxin produced by enterotoxigenic Escherichia coli.
After removal of total B subunit and heat-labile enterotoxin (LT) from crude cell extracts of enterotoxigenic Escherichia coli (HB 101-EWD 299) by Bio-gel A 5 m column chromatography, the crude cell extract was shown to contain a free A subunit (A' subunit) that did not bind to the coligenoid of the B subunits. The A' subunit was found to be immunologically identical to the A subunit of holo-LT...
متن کاملThe Escherichia coli cAMP receptor protein bound at a single target can activate transcription initiation at divergent promoters: a systematic study that exploits new promoter probe plasmids.
We report the first detailed quantitative study of divergent promoters dependent on the Escherichia coli cAMP receptor protein (CRP), a factor known to activate transcription initiation at target promoters by making direct interactions with the RNA polymerase holoenzyme. In this work, we show that CRP bound at a single target site is able to activate transcription at two divergently organized p...
متن کاملDeciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli
The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total...
متن کاملConcentration- and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells
Binding and unbinding of transcription regulators at operator sites constitute a primary mechanism for gene regulation. While many cellular factors are known to regulate their binding, little is known on how cells can modulate their unbinding for regulation. Using nanometer-precision single-molecule tracking, we study the unbinding kinetics from DNA of two metal-sensing transcription regulators...
متن کامل